SOME BEAUTIFUL 2D CURVES AND THEIR EQUATIONS
![Image](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEipie_uadQAeDrKoNsB18kYQaI24pwj9qrcb523-HpAP5UBanLbwJKgQyFBah4o3Ky-UwYdfyMqd956BpcNeBja5-WuB5pYsdsFBVu0P5kQ4pQgOue8zbNWQDRTOBBTqLhpCRJCuMM_VgrT1U1j_3fNpgg5w4aWIg_u-j3FejKWUrRC72NrI7suKtOp/w320-h320/desmos-graph.png)
THE LOVE EQUATION `x^2+{(y-x^{2/3})}^2=1` THE POLAR ROSE General Equation: `r=a\sin(k\theta)` or `r=a\cos(k\theta)` For positive integral values of k, the rose will have 2k petals if k is even, and k petals if k is odd. (For k = 1, it will simply be a circle). `r=\sin(4\theta)` `r=\sin(5\theta)` For non-integral value of k, we get beautiful graphs like : `r=\sin(2.5\theta)` `r=\sin\left(\pi\theta\right)` THE ARCHIMEDIAN SPIRAL General Equation: `r=a\theta` ('a' is a constant) `r=\theta` THE LOGARITHMIC SPIRAL General Equation: `r=ae^{b\theta}` `r=e^{0.5\theta}` THE BRACELET x = cos t y = sin t + 0.1 cos 6.2t THE LEMNISCATE OF BERNOULLI General Equation: `\left(x^2+y^2\right)^2=2c^2\left(x^2-y^2\right)` `\left(x^2+y^2\right)^2=2\left(x^2-y^2\right)` THE BATMAN LOGO